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Indole derivatives form complexes with the Cr(CO), unit at the 6-membered 
ring. Addition of reactive carbon nucleophiles occurs at the coordinated ring 
with strong preference for C-4 and, in a few cases, for C-7. Oxidation of the 
intermediate cyclohexadienyl anionic complexes produces substituted indoles 
in good yield. Complexes of IV-methylindoline and benzofuran also undergo the 
addition/oxidation sequence preferentially at C-4. Changes in the substituents 
at C-3 and the nitrogen atom in the indole compleses influences the regio- 
selectivity so that either C-4 or C-7 substitution can be observed. The selectiv- 
ity is correlated with EHT calculations on free indole and complexes indole. 

The indole skeleton appears widely in biologically-active molecules, with 
carbon substituents invariably at C-3 and commonly at C-Z and C-4. Electro- 
philic reactions occur with good selectivity at C-3 [l] , metalation can activate 
C-2 123 and less general methods have been employed to add carbon units at 
C-4 [3] . We wish to report that the tricarbonylchromium complexes of N- 
protected indoles (complexes Z-8), IV-methylindoline (9), and benzofuran 
(IO) are excellent substrates for the addition/oxidation method [4] of sub- 
stitution by reactive carbon nucleophiles; that electronic factors strongly 
direct attack to C-4 and C-7; and that steric factors conveniently allow either 
C-4 or C-7 to be favored [ 53. 

A preliminary survey of the reactivity of q6 -(N-methylindole)tricarbonyl- 
chromium (2) [ 61 q 6 -(IV-methylindoline)tricarbonylchromium (9) [ 81 and 
p6 -(benzofuran)tricarbonylchromium (10) [ 91 was carried out. In each case, 
the set of anions which added successfully (Table 1) is similar to the set which 
adds to q6 -benzenetricarbonylchromium itself [4]. Ketone enolates fail to 
add (<20%), while ester enolates, cyano-stabilized carbanions, and 2-lithio-1,3- 
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TABLE 1 

SUBSTITUTIOX OF INDOLE. INDOLINE. AND BENZOFURAN COMPLEXES 

Entry Complex Product Combined 
anion = ratio yield 

c--1/c-7 (%) f 

1 2/A 9713 h 73 
2 3/A loo/o b 82 
3 WA 98/2h 95 
4 91A 71129 d (89) g 
5 1QlA 73/27 b il 

6 5/A 57143 b 86 
7 6/A I-t/83 h 82 
8 7/A 95/5 b 78 
9 8/A Iootoh 9qi 

10 2/B 76/25C 53 
11 2/C 99/I d 92 
12 2/D 1~186 d 68 
13 WE 
13 S/D 
15 IOIB 
16 IOID 
17 6/F 

16J84e 43 
10010 e 61P 

63137 = 55 
86111 d 42 
33167 b 64 

o Anions A. B, C, and F were generated using lithium diisopropylamide as base (1.05 mol-eq. -78°C. 
THF) while anions D and E were prepared using n-butylllthium as base (1.05 mol-eq. -3OOC. THF). 
h The complex was added to the anion in THF at -7fJ°C: after 0.5 h. excess iodine (5 mol-eq) in THF 
was added and the mixture was w-armed slowls to 25-C and allowed to 9th for several hours. The pro- 
ducts were isolated through standard extraction/chromatography procedures. c The reaction was carried 
out at 0°C in THF/HhlPA (5/l) for 0.5 h. d THF/HMPA <S/l).-78OC. 0.6 h.e THF/HhlPA (l/l). 0°C. 
0.5 h. f The yields are based on weighed amounts of combined substituted indoles after simple chroma- 
tographic purification. All products were obtained in pure form and identifie-i by comparison of spectral 
and chromatographic data except where noted. a This yield refers to the mix we of substituted indolines 
which was obtained after chromatography. The mixture was directly dehydrcgenated and the product 
indoles mere separated and identified. h The 5% yield of by-product includes at least two substituted 
indolrs. not identified in detail. i N-MethyIindole was recovered (29%): the yield is baaed on the amount 
converted_ 

dithiane give excellent results. Very reactive anions (LiCH,SPh, n-BuLi) lead 
primarily to metalation at C-7 [lO,ll] . 

The parent indole complex (1) is easily converted into a series of N-pro- 
tected versions through deprotonation with NaH. We find N-protection of 1, 
especially silylation, to proceed with greater efficiency than the corresponding 
reactions on indole [12]_ For example, 1 is treated with NaH (30% excess) 
in THF at 25°C for 15 min (gas evolution); then t-butyldiphenylsilyl chloride 
(30% excess) is added_ After 15 min, 4 is obtained in 64% yield using the 
usual extraction procedures and rapid chromatography. Addition of 2-lithio-2- 
methylpropionitrile (A) is complete within 1.0 h at -78°C in THF or mix- 
tures of THF/HMPA; then addition of excess iodine (25°C several h) pro- 
vides the substituted indoles. Selectivity in four simple cases (entries l-3,9) 
is >9’7% for C-4, with the remainder (O-3%) at C-7 [13]. The less bulky 
analog, lithioacetonitrile (B) reacts with 2 under the same conditions as A 
but with lower selectivity (entry IO). On the other hand, 2-lithio-1,3-dithiane 
and 1-lithio-3-(trimethylsilyl)-2-propene show a strong preference for C-7 
giving after oxidation, a mixture of substitution at C-7/C-4 = 6/l (entries 12, 
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pII$ :p&+p 
C-4 Series C-7 Series 

Series of complexes: 

1: X=NH,Y=H 
2: X = NMe. Y = H 
3: X = NCH,Ph. Y = H Series of anions: 
4: X = NSiPh,-t-Bu. Y = H 
5: X = NMe. Y = hle A: R = C(CH,& CN 
6: X = NMe. Y = CH, SihIe, B: R=CH,CN 
7: X = NSiPhz -t-Bu. Y = CH, SiMe, C: R = C(CH, & COz -t-Bu 
8: X = NCO=-t-Bu. Y = H 
9: X = NMe. Y = H <2,3&hydro-) 

10: X=O.Y=H 
D: R=<z] 

E: R = CH, CH=CHSihIe, 
F: R = CH<CH,)CN 

Structure numbering: the products are labelled with the number of the complex and the letter of the 
anion from which they are derived. followed by the number for the position of substitution (4 or 7). 

13) [13,18]. Ester enolates generally parallel the selectivity of cyano-stabil- 
ized anions; t-butyl-2-lithioisobutyrate adds almost exclusively at C-4 (entry 
11) [13]. It has been noted that the selectivity in addition to substituted 
arenetricarbonylchromium complexes, correlates with the pattern of coeffi- 
cients in the LUMO for the free arene (151. Extended Hiickel Calculations 
[ 201 on indole and the indoletricarbonylchromium complex [ 211 are summar- 
ized in Fig. 1. Consistent with the observed selectivity, the larger coefficients ap- 
pear at C-4 and C-7 [ 22]_ 

-0.56 i& 

:::m ;;;a 

-0.55 -0.36 
Fig. 1. Coefficients for LUMO in lndole and indole-Cr(CO), _ 

The mdoline complex 9 gives the C-4 product with both 2-lithio-2-methyl- 
propionitrile and 2-lithio-1,3-dithiane (entries 4,14). Since the conversion 
of indolines to indoles can be efficient [23], results in entries 12 and 14 
point to general processes of substitution by 2-lithio-1,3-dithiane and related 
anions at either C-4 or C-7. With benzofuran complex 10, all anions tested 
showed selectivity for C-4, ranging from 2/l to greater than 6/l (entries 5, 
15,16) [13]. Again, the selectivity is slightly higher with tertiary carbanions 
compared to primary. 

Important questions in considering the regioselectivity in the two-step 
addition/oxidation reaction include whether kinetic control is operating and 
whether the iodine oxidation procedure influences the position of attachment 
of the nucleophile. No direct evidence for kinetic control is available, but in 
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these and other examples [ 19, 243, variation in reaction temperature 
(-78”C/O.5 h to 25”C/l h) and medium (THF, THF/HMPA, etc.) has no sig- 
nificant effect on the distribution of isomers. In the reaction of anion A with 
complex 2 an alternate isolation procedure with excess trifluoroacetic acid 
at -78°C in place of iodine, led to dihydroindoles (89% yield; tentative struc- 
ture 14) [ 83 which were dehydrogenated to indoles (Pd/C, 15O”C, 6 h, 80% 
yield). A mixture of C-4/C-7 derivatives (2A-4/2A-7) was obtained in the ratio 
97/3, identical to the products from iodine oxidation [ 133 

14 2A-4 
\ 

The balance between electronic effects and steric effects is delicate in the 
indole system. With the N-methyl-3-methylindole complex (5) anion A pro- 
duces the C-4 and C-7 isomers in in the ratio of 4/3 (86% yield), suggesting 
steric hindrance to addition at C-4 (compare TabIe 1, entries 1 and 6). The 
larger trimethylsilylmethyl substituent at C-3 (in 6) further disfavors C-4, 
so that C-7 is preferred by 6/l (82% yield, entry 7). With the less bulky anion, 
2-lithiopropionitrile, the steric hindrance from C-3 is less effective and 6 reacts 
at C-4 and C-7 in the ratio l/2 (64% yield, entry 17). The reverse effect can be 
achieved by increasing the size of the N-protecting group. In the extreme case 
of complex 7, with the t-butyldiphenylsilyl group, anion A adds at C-4 to the 
extent of 95% (73% yield, entry B). 

More cases must be examined before the full pattern of selectivity in addi- 
tions to these complexes is clear, but useful selectivity for C-4 and C-7 is now 
established. 
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